Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biosci Bioeng ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38472071

RESUMO

Chinese hamster ovary (CHO) cells are widely used as a host for producing recombinant therapeutic proteins due to advantages such as human-like post-translational modification, correct protein folding, higher productivity, and a proven track record in biopharmaceutical development. Much effort has been made to improve the process of recombinant protein production, in terms of its yield and productivity, using conventional CHO cell lines. However, to the best of our knowledge, no attempts have been made to acquire new CHO cell lines from Chinese hamster ovary. In this study, we established and characterized a novel CHO cell line, named CHO-MK, derived from freshly isolated Chinese hamster ovary tissues. Some immortalized cell lines were established via sub-culture derived from primary culture, one of which was selected for further development toward a unique expression system design. After adapting serum-free and suspension culture conditions, the resulting cell line exhibited a considerably shorter doubling time (approximately 10 h) than conventional CHO cell lines (approximately 20 h). Model monoclonal antibody (IgG1)-producing cells were generated, and the IgG1 concentration of fed-batch culture reached approximately 5 g/L on day 8 in a 200-L bioreactor. The cell bank of CHO-MK cells was prepared as a new host and assessed for contamination by adventitious agents, with the results indicating that it was free from any such contaminants, including infectious viruses. Taking these findings together, this study showed the potential of CHO-MK cells with a shorter doubling time/process time and enhanced productivity in biologics manufacturing.

2.
Angew Chem Int Ed Engl ; 63(11): e202317045, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38191829

RESUMO

Topological gels possess structures that are cross-linked only via physical constraints; ideally, no attractive intermolecular interactions act between their components, which yields interesting physical properties. However, most reported previous topological gels were synthesized based on supramolecular interlocked structures such as polyrotaxane, for which attractive intermolecular interactions are essential. Here, we synthesize a water-soluble "molecular net" (MN) with a large molecular weight and three-dimensional network structure using poly(ethylene glycol). When a water-soluble monomer (N-isopropylacrylamide) is polymerized in the presence of the MNs, the extending polymer chains penetrates the MNs to form an ideal topological MN gel with no specific attractive interactions between its components. The MN gels show unique physical properties as well a significantly high degree of swelling and high extensibility due to slipping of the physical cross-linking. We postulate this method to yield a new paradigm in gel science with unprecedented physical properties.

3.
J Biosci Bioeng ; 133(3): 273-280, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34930670

RESUMO

Chinese hamster ovary (CHO) cells are widely used for constructing expression systems to produce therapeutic proteins. However, the establishment of high-producer clones remains a laborious and time-consuming process, despite various progresses having been made in cell line development. We previously developed a new strategy for screening high monoclonal antibody (mAb)-producing cells using flow cytometry (FCM). We also reported that p180 and SF3b4 play key roles in active translation on the endoplasmic reticulum, and that the productivity of secreted alkaline phosphatase was enhanced by the overexpression of p180 and SF3b4. Here, we attempted to apply the translational enhancing technology to high mAb-producing cells obtained after high-producer cell sorting. A high mAb-producing CHO clone, L003, which showed an mAb production level of >3 g/L in fed-batch culture, was established from a high mAb-producing cell pool fractionated by FCM. Clones generated by the overexpression of p180 and SF3b4 in L003 cells were evaluated by fed-batch culture. The specific productivity of clones overexpressing these two factors was ∼3.1-fold higher than that of parental L003 cells in the early phase of the culture period. Furthermore, the final mAb concentration was increased to 9.5 g/L during 17 days of fed-batch culture after optimizing the medium and culture process. These results indicate that the overexpression of p180 and SF3b4 would be promising for establishing high-producer cell lines applicable to industrial production.


Assuntos
Anticorpos Monoclonais , Técnicas de Cultura Celular por Lotes , Animais , Células CHO , Cricetinae , Cricetulus , Proteínas Recombinantes , Tecnologia
4.
Acta Crystallogr F Struct Biol Commun ; 72(Pt 7): 569-72, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27380375

RESUMO

In most organisms, Cys-tRNA(Cys) is directly synthesized by cysteinyl-tRNA synthetase (CysRS). Many methanogenic archaea, however, use a two-step, indirect pathway to synthesize Cys-tRNA(Cys) owing to a lack of CysRS and cysteine-biosynthesis systems. This reaction is catalyzed by O-phosphoseryl-tRNA synthetase (SepRS), Sep-tRNA:Cys-tRNA synthase (SepCysS) and SepRS/SepCysS pathway enhancer (SepCysE) as the transsulfursome, in which SepCysE connects both SepRS and SepCysS. On the transsulfursome, SepRS first ligates an O-phosphoserine to tRNA(Cys), and the mischarged intermediate Sep-tRNA(Cys) is then transferred to SepCysS, where it is further modified to Cys-tRNA(Cys). In this study, a subcomplex of the transsulfursome with tRNA(Cys) (SepCysS-SepCysE-tRNA(Cys)), which is involved in the second reaction step of the indirect pathway, was constructed and then crystallized. The crystals diffracted X-rays to a resolution of 2.6 Šand belonged to space group P6522, with unit-cell parameters a = b = 107.2, c = 551.1 Å. The structure determined by molecular replacement showed that the complex consists of a SepCysS dimer, a SepCysE dimer and one tRNA(Cys) in the asymmetric unit.


Assuntos
Aminoacil-tRNA Sintetases/química , Proteínas Arqueais/química , Methanocaldococcus/química , RNA de Transferência de Cisteína/química , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Methanocaldococcus/enzimologia , Plasmídeos/química , Plasmídeos/metabolismo , RNA de Transferência de Cisteína/genética , RNA de Transferência de Cisteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Difração de Raios X
5.
Proc Natl Acad Sci U S A ; 111(29): 10520-5, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-25002468

RESUMO

Methanogenic archaea lack cysteinyl-tRNA synthetase; they synthesize Cys-tRNA and cysteine in a tRNA-dependent manner. Two enzymes are required: Phosphoseryl-tRNA synthetase (SepRS) forms phosphoseryl-tRNA(Cys) (Sep-tRNA(Cys)), which is converted to Cys-tRNA(Cys) by Sep-tRNA:Cys-tRNA synthase (SepCysS). This represents the ancestral pathway of Cys biosynthesis and coding in archaea. Here we report a translation factor, SepCysE, essential for methanococcal Cys biosynthesis; its deletion in Methanococcus maripaludis causes Cys auxotrophy. SepCysE acts as a scaffold for SepRS and SepCysS to form a stable high-affinity complex for tRNA(Cys) causing a 14-fold increase in the initial rate of Cys-tRNA(Cys) formation. Based on our crystal structure (2.8-Šresolution) of a SepCysS⋅SepCysE complex, a SepRS⋅SepCysE⋅SepCysS structure model suggests that this ternary complex enables substrate channeling of Sep-tRNA(Cys). A phylogenetic analysis suggests coevolution of SepCysE with SepRS and SepCysS in the last universal common ancestral state. Our findings suggest that the tRNA-dependent Cys biosynthesis proceeds in a multienzyme complex without release of the intermediate and this mechanism may have facilitated the addition of Cys to the genetic code.


Assuntos
Archaea/metabolismo , Proteínas Arqueais/metabolismo , Cisteína/biossíntese , Mathanococcus/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , RNA de Transferência de Cisteína/metabolismo , Acetilação , Proteínas Arqueais/química , Sequência Conservada , Cristalografia por Raios X , Cinética , Modelos Moleculares , Fatores de Iniciação de Peptídeos/química , Ligação Proteica , Estrutura Terciária de Proteína , RNA de Transferência de Cisteína/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...